

Cor pulmonale

Peter Celec petercelec@gmail.com www.imbm.sk

Introduction

2,718281828459045235360287471352

е

Leonhard Euler (1707-1783)

Introduction

Ulf von Euler (1905-1983)

Nobel prize in 1970 neurotransmitters

Göran Liljestrand (1886-1968)

Karolinska Institute

From the Pharmacological and Physiological Departments, Karolinska Institutet, Stockholm.

From the Pharmacological and Physiological Departments, Karolinska Institutet, Stockholm.

Euler–Liljestrand mechanism

are blocked

Oxygendependent potassium channels

Observations on the Pulmonary Arterial Blood Pressure in the Cat.

By

U. S. v. EULER and G. LILJESTRAND.

Received 9 August 1946.

Depolarisation due to blocked channels
 Ca²⁺ release from ER
 Smooth muscle contraction due to calcium release
 vasoconstriction

Pulmonary arterial pressure

Pulmonary circulation vs systemic circulation

Lungs are the only organ to receive the entire cardiac output

Same volume of blood, but much lower arterial pressure

Why?

Large cross-sectional area of pulmonary capillaries

Pulmonary arterial pressure

Systolic PAP

• 18-25 mm Hg

Mean PAP

• 12-16 mm Hg

Pulmonary venous pressure

• 6-10 mm Hg

PAP = (Pulmonary flow x pulmonary vascular resistance) + PVP

Mean pulmonary pressure at rest > 25 mm Hg

WHO classification

• 5 groups

Main cause – COPD

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Other pulmonary diseases with mixed restrictive and obstructive pattern
 Sleep-disordered breathing
- Alveolar hypoventilation disorders
- Developmental abnormalities

SWOT analysis

- Strenghts
- Weaknesses
- Opportunities
- Threats

Causes of pulmonary hypertension

- Arterial hypertension
- Venous hypertension (left heart)
- Obstructive lung disease hypoxemia
- Thromboembolism

Pulmonary Artery Hypertension

Idiopathic pulmonary hypertension Familial pulmonary hypertension

- Collagen vascular disease
- Congenital systemic-to-pulmonary shunts
- · Hepatic portal vein hypertension
- HIV infection
- · Drugs and toxins
- Others

Associated with venous or capillary involvement

- · Pulmonary veno-occlusive disease
- Pulmonary capillary hemangiomatosis

Pulmonary Venous Hypertension

Left atrial, left ventricular, aortic valve, and mitral valve disease Cor triatriatum Left atrial mvxoma

Pulmonary Hypertension associated with Hypoxemia

Chronic obstructive lung disease Interstitial lung disease Sleep-disordered breathing Alveolar hypoventilation disorders Chronic exposure to high altitude

Pulmonary Arterial Hypertension due to Chronic Thrombotic or Embolic Disease

Miscellaneous

- Sarcoidosis
- Compression of pulmonary vessels
- Sickle cell disease
- Others

Survival

Pulmonary arterial hypertension (PAH)

Idiopathic (1/1 000 000/year) and heritable – familial

Bone morphogenic protein receptor 2 (BMPR2)

Genome-wide association analysis identifies a **genetics** susceptibility locus for pulmonary arterial hypertension

Anton Vonk-Noordegr Table 1 Association of CBLN2 rs2217 Anne-Marie Dupuy¹⁶, familial PAH in two independent case Marion Delcroix^{21,22}, E-Discovery Replic Erika Berman-Rosenzy Marc Humbert⁵⁻⁷ & Flo Controls Cases Controls n = 456rs2217560 n = 1.068 n = 340**Relative CBLN2/GAPDH** 925 (87%) 262 (77%) 400 (88%) AA mRNA levels AG 136 (13%) 72 (21%) 52 (11%) GG 7 (<1%) 6 (2%) 4 (1%) 2 MAF (G) 0.070 0.123 0.066 1.56×10^{-5} Pa $1.63 \times$ Allelic controlpart ORb 1.87 (1.41-2.48) 2.16 (1.5

Marine Germain^{1,2}, Mélanie Eyries²⁻⁴, David Montani⁵⁻⁷, Odette Poirier^{2,3}, Barb

Florence Coulet⁴, Soph_

CBLN2 (Cerebellin 2 Precursor)

nature

Pulmonary arterial hypertension (PAH)

Issue One: 50% chance a parent with a *BMPR2* mutation will pass that mutation to her child.

Issue Two: 20% chance a person with a BMPR2 mutation will develop PAH in their lifetime

Pulmonary arterial hypertension (PAH)

Pathogenesis – PAH

Cellular and molecular mechanisms of disease induction

Figure 1 | Vascular remodeling in pulmonary arterial hypertension. Putative therapeutic targets are indicated. Abbreviations: 5-HT, 5-hydroxytryptamin; K- and Ca-channels, potassium and calcium channels; AEC, alveolar epithelial cells; BMP, bone morphogenetic protein; cGMP, cyclic guanosine monophosphate; ECM, extracellular matrix; EGF, epidermal growth factor; EPC, endothelial progenitor cells; HIF, hypoxia inducible factor; MMPs, matrix metalloproteinases; NADPH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; PDE, phosphodiesterase; PDGF, platelet-derived growth factor; PGI₂, prostaglandin I₂; Rho-Ki, Rho kinases; ROS, reactive oxygen species; sGC, soluble guanylate cyclase; TGF, transforming growth factor- β ; TK, tyrosine kinase; TKi, tyrosine kinase inhibitor; TRPC, transient receptor potential cation channels; VEGF, vascular endothelial growth factor.

Where do the cytokines come from?

Key points

- Pulmonary hypertension is a progressive disease of various origins, which has a poor prognosis and affects, in its different forms, more than 100 million people worldwide
- Pulmonary arterial hypertension (PAH) is now considered to be a vasculopathy in which structural changes driven by excessive vascular cell growth and inflammation have a major role
- A number of proproliferative signaling pathways involving growth factors, cytokines, metabolic signaling, and elastases and proteases have been identified in the pathophysiology of PAH
- Clinical studies with tyrosine kinase inhibitors, serotonin antagonists, and soluble guanylate cyclase stimulators are underway in patients with PAH
- The benefits of progenitor cells for vascular repair in PAH are under active investigation
- The right ventricular response to increased pressure load is recognized as critical to survival in patients with PAH, and strategies for preserving myocardial function are increasingly attracting interest

PH due to left heart disease

PH due to hypoxia

COPD

Interstitial lung diseases

Sleep-disordered breathing

Obstructive sleep apnea

Risk factors for obstructive SAS?

Male gender, age > 65 years, BMI > 30, large adenoids, neck size

Table 67-1 Apnea Severity		
AHI	Apnea Severity	
0–5 5–15 15–29 ≥30	Normal Mild Moderate Severe	

AHI, apnea-hypopnea index.

Risk determinants

Lower Risk	Determinants of Risk	Higher Risk
No	Clinical evidence of RV failure	Yes
Gradual	Progression	Rapid
II, III	WHO class	IV
Longer (>400 m)	6 minutes walk test	Shorter (<300 m)
Minimally elevated	BNP	Very elevated
Minimal RV dysfunction	Echocardiographic findings	Pericardial effusion, significant RV dysfunction
Normal/near normal RA pressure and CO	Hemodynamics	High RA pressure, low CO

Table 2. Functional Classification of Pulmonary ArterialHypertension.*

Class	Description
Class I	Pulmonary arterial hypertension without a resulting limitation of physical activity. Ordinary physical activity does not cause undue dyspnea or fatigue, chest pain, or near syncope.
Class II	Pulmonary arterial hypertension resulting in a slight limitation of physical activity. The patient is comfortable at rest, but ordinary physical activity causes undue dyspnea or fatigue, chest pain, or near-syncope.
Class III	Pulmonary arterial hypertension resulting in a marked limitation of physical activity. The patient is comfortable at rest, but less than ordinary activity causes undue dyspnea or fatigue, chest pain, or near-syncope.
Class IV	Pulmonary arterial hypertension resulting in an inability to carry out any physical activity without symptoms. The patient has signs of right heart failure. Dyspnea, fatigue, or both may be present even at rest, and dis- comfort is increased by any physical activity.

Diagnostic Test	Potential Findings
Electrocardiography	P pulmonale (P wave in lead II greater than 3 mV)
	Right-axis deviation
	R wave greater than S wave in lead V_1
Chest radiography	Enlarged pulmonary arteries
	RV enlargement
	Parenchymal lung disease
	Skeletal abnormalities
Echocardiography	PAP estimated by TR velocity
	RV hypertrophy
	RV enlargement
	LV function/LA size
	Valvular disease
	Imaging to detect ASD or VSD
Pulmonary function testing with ABG	COPD
	Restrictive lung disease
	Hypoventilation
Ventilation/perfusion lung scan, CT angiogram (MRI in special cases)	To diagnose or exclude pulmonary embolism
PA angiography	For further evaluation of indeterminate lung scan to exclude thromboembolism
Cardiac catheterization	Pressure determinations at rest and after inhalation of 100% oxygen
	Pulmonary wedge pressure
	Response to vasodilators

ABG, arterial blood gas; ASD, atrioventricular septal defect; COPD, chronic obstructive pulmonary disease; CT, computed tomography; PA, pulmonary artery; PAP, pulmonary artery pressure; LA, left atrial; LV, left ventricular; MRI, magnetic resonance imaging; RV, right ventricular; TR, tricuspid regurgitation; VSD, ventricular septal defect.

Pulmonary hypertension

Mean pulmonary arterial pressure > 25 mm Hg at rest

Pulmonary arterial hypertension

- Pulmonary wedge pressure < 15 mm Hg
- Normal left ventricular ejection fraction
- No left-sided valvular disease

Jeremy Swan (1922-2005)

William Ganz (1919-2009)

CATHETERIZATION OF THE HEART IN MAN WITH USE OF A FLOW-DIRECTED BALLOON-TIPPED CATHETER*

H. J. C. Swan, M.B., Ph.D., F.R.C.P., William Ganz, M.D., C.Sc., James Forrester, M.D., Harold Marcus, M.D., George Diamond, M.D., and David Chonette

Abstract Pressures in the right side of the heart and pulmonary capillary wedge can be obtained by cardiac catheterization without the aid of fluoroscopy. A No. 5 Fr double-lumen catheter with a balloon just proximal to the tip is inserted into the right atrium under pressure monitoring. The balloon is then inflated with 0.8 ml of air. The balloon is carried by blood flow through the right side of

the heart into the smaller radicles of the pulmonary artery. In this position when the balloon is inflated wedge pressure is obtained. The average time for passage of the catheter from the right atrium to the pulmonary artery was 35 seconds in the first 100 passages. The frequency of premature beats was minimal, and no other arrhythmias occurred.

THE NEW ENGLAND JOURNAL OF MEDICINE

Aug. 27, 1970

Figure 1. Construction of the Catheter.

Swan-Ganz catheter

Pulmonary artery catheter

Balloon-tipped, Swan-Ganz catheter for measuring pulmonary capillary wedge pressure (PCWP).

Swan-Ganz catheter

ECG Impression: Normal sinus rhythm, rate 67. Right axis deviation. Right atrial enlargement. RVH with ST-T abnormalities

PR Interval: 189	QT Interval: 413	Axes: P: 40	ST: -56
QRS Duration: 85	QT Interval Corrected: 436	MEAN QRS: 156	T: -32
ECG Sevenitu: -	ARNORMAL FCG -		

Echocardiography

Normal

Pulmonary hypertension

Pulmonary angiography

	Drug and Year Approved	Drug Class	Route of Administration	Doses	Frequency
	Epoprostenol (Flolan), 1995	Prostaglandins	IV	Initiate 1–2 ng/ kg/min IV and titrate to efficacy and side effects.	Continuous IV
Treatment					
Pulmonary artery	Bosentan (Tracleer), 2001	ERA	PO	62.5 and 125 mg	BID
↓ Right ventricular afterload	Treprostinil (Remodulin SC), 2002	Prostaglandins	SC	Initiate 1.25– 2.5 ng/kg/min SC; can reduce to 0.625 ng/kg/ min if not tolerated.	Continuous SC
- No PDE5	Trepostinil (Remodulin IV), 2004	Prostaglandins	IV	Initiate 1.25– 2.5 ng/kg/min IV; can reduce to 0.625 ng/kg/ min if not tolerated.	Continuous IV
Right ventricular inotropy	lloprost (Ventavis), 2004	Prostaglandins	Inhaled	2.5 and 5 μg	6–9 inhala- tions per day while awake; not more than q2hr
Presence of Right PDE5 ventricle	Sildenafil (Revatio), 2005	PDE-5 Inhibitor	РО	20 mg	TID
	Ambrisentan (Letairis), 2007	ERA	PO	5 and 10 mg	QD

Figure 1. Targets for Current or Emerging Therapies in Pulmonary Arterial Hypertension.

Novel therapies for PAH

European Heart Journal (2016) **37**, 67–119 doi:10.1093/eurheartj/ehv317 ESC/ERS GUIDELINES

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)

Table 4Comprehensive clinical classification ofpulmonary hypertension (updated from Simonneau et al.⁵)

I. Pulmonary arterial hypertension

I.I Idiopathic

I.2 Heritable

I.2.1 BMPR2 mutation

1.2.2 Other mutations

1.3 Drugs and toxins induced

1.4 Associated with:

- 1.4.1 Connective tissue disease
- 1.4.2 Human immunodeficiency virus (HIV) infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disease (Table 6)
- 1.4.5 Schistosomiasis

I'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

1'.1 Idiopathic

l'.2 Heritable

- I'.2.1 EIF2AK4 mutation
- I'.2.2 Other mutations
- 1'.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
 - I'.4.1 Connective tissue disease
 - I'.4.2 HIV infection

I". Persistent pulmonary hypertension of the newborn

- 2. Pulmonary hypertension due to left heart disease
 - 2.1 Left ventricular systolic dysfunction
 - 2.2 Left ventricular diastolic dysfunction

2.3 Valvular disease

2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies

2.5 Congenital /acquired pulmonary veins stenosis

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artery obstructions
 - 4.2. I Angiosarcoma
 - 4.2.2 Other intravascular tumors
 - 4.2.3 Arteritis
 - 4.2.4 Congenital pulmonary arteries stenoses
 - 4.2.5 Parasites (hydatidosis)
- 5. Pulmonary hypertension with unclear and/or multifactorial mechanisms
 - 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
 - 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis, neurofibromatosis
 - 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
 - 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

Table 3 Haemodynamic definitions of pulmonary hypertension^a

Definition	Characteristics ^a	Clinical group(s) ^b
РН	PAPm ≥25 mmHg	All
Pre-capillary PH	PAPm ≥25 mmHg PAWP ≤15 mmHg	 Pulmonary arterial hypertension PH due to lung diseases Chronic thromboembolic PH PH with unclear and/or multifactorial mechanisms
Post-capillary PH	PAPm ≥25 mmHg PAVVP >15 mmHg	 2. PH due to left heart disease 5. PH with unclear and/or multifactorial mechanisms
Isolated post-capillary PH (Ipc-PH)	DPG <7 mmHg and/or PVR ≤3 WU⁵	
Combined post-capillary and pre-capillary PH (Cpc-PH)	DPG ≥7 mmHg and/or PVR >3 WU ^c	

I. Pulmonary hypertension (PH) is a haemodynamic and pathophysiological condition defined as an increase in mean pulmonary arterial pressure ≥25 mmHg at rest as assessed by right heart catheterization (Table 3). PH can be found in multiple clinical conditions (Table 4).

Table 7Updated risk level of drugs and toxins knownto induce pulmonary arterial hypertension

Definite	Likely	Possible
 Aminorex Fenfluramine Dexfenfluramine Toxic rapeseed oil Benfluorex Selective serotonin reuptake inhibitors^a 	 Amphetamines Dasatinib L-tryptophan Methamphetamines 	 Cocaine Phenylpropanolamine St John's Wort Amphetamine-like drugs Interferon α and β Some chemotherapeutic agents such as alkylating agents (mytomycine C, cyclophosphamide)^b

^aIncreased risk of persistent pulmonary hypertension in the newborns of mothers with intake of selective serotonin reuptake inhibitors. ^bAlkylating agents are possible causes of pulmonary veno-occlusive disease.

Table 8AEchocardiographic probability ofpulmonary hypertension in symptomatic patients witha suspicion of pulmonary hypertension

Peak tricuspid regurgitation velocity (m/s)	Presence of other echo 'PH signs'ª	Echocardiographic probability of pulmonary hypertension	
≤2.8 or not measurable	No	Low	
≤2.8 or not measurable	Yes	Intermediate	
2.9–3.4	No		
2.9–3.4	Yes	11:4	
>3.4	Not required	High	

Diagnostic guidelines

Diagnostic guidelines

CHD = congenital heart diseases; CT = computed tomography; CTD = connective tissue disease; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO = carbon monoxide diffusing capacity; ECG = electrocardiogram; HIV = Human immunodeficiency virus; HR-CT = high resolution CT; mPAP = mean pulmonary arterial pressure; PA = pulmonary angiography; PAH = pulmonary arterial hypertension; PAWP = pulmonary artery wedge pressure; PFT = pulmonary function tests; PH = pulmonary hypertension; PVOD/PCH = pulmonary veno-occlusive disease or pulmonary capillary hemangiomathosis; PVR = pulmonary vascular resistance; RHC = right heart catheterisation; RV = right ventricular; V/Q = ventilation/perfusion.

^aCT pulmonary angiography alone may miss diagnosis of chronic thromboembolic pulmonary hypertension.

Guidelines for risk assessment

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%	
Clinical signs of right heart failure	Absent	Absent	Present	
Progression of symptoms	No	Slow	Rapid	
Syncope	No	Occasional syncope ^b	Repeated syncope ^c	
WHO functional class	I, II	Ш	IV	
6MWD	>440 m	165–440 m	<165 m	
Cardiopulmonary exercise testing	Peak VO ₂ >15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO2 I I–I5 ml/min/kg (35–65% pred.) VE/VCO2 slope 36–44.9	Peak VO2 <11 ml/min/kg (<35% pred.) VE/VCO2 slope ≥45	
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/l	BNP 50–300 ng/l NT-proBNP 300–1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l	
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion	
Haemodynamics	RAP <8 mmHg CI ≥2.5 l/min/m ² SvO₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m ² SvO ₂ 60–65%	RAP >14 mmHg CI <2.0 l/min/m ² SvO ₂ <60%	

Follow up guidelines

	At baseline	Every 3–6 months ^a	Every 6–12 months ^a	3–6 months after changes in therapy ^a	In case of clinical worsening
Medical assessment and determination of functional class	+	+	+	+	+
ECG	+	+	+	+	+
6MWT/Borg dyspnoea score	+	+	+	+	+
CPET	+		+		+e
Echo	+		+	+	+
Basic lab ^b	+	+	+	+	+
Extended lab ^c	+		+		+
Blood gas analysis ^d	+		+	+	+
Right heart catheterization	+		+ ^f	+°	+°

Chronic thromboembolic PH

^aCT pulmonary angiography alone may miss diagnosis of chronic thromboembolic pulmonary hypertension.

Chronic thromboembolic PH

^aTechnically operable patients with non-acceptable risk/benefit ratio can be considered also for BPA. ^bIn some centers medical therapy and BPA are initiated concurrently.

Pulmonary embolism

Pulmonary embolism is an occlusion or partial occlusion of the pulmonary artery by an embolus – mostly (95%) from deep vein thrombosis.

Embolus with infarction

Embolus without infarction (bronchial circulation)

Massive occlusion

Multiple pulmonary emboli

Chronic reccurent embolization

Virchow's triad

Pulmonary embolism

Pulmonary embolism

Pathophysiology

- Hemodynamic changes
 - Pulmonary hypertension, decrease in cardiac output
- Changes in ventilation/perfusion
 - Hyperventilation, less surfactant production, alveolar collapse

• Hypoxemia

• Less surfactant, inefficient perfusion of hypoventilated areas, right to left shunts

Bronchoconstriction

• Histamine from the embolus, wheezing

Pulmonary infarction

Molecular pathogenesis

Decrease in endothelium-derived vasodilators

• NO, prostacyclin

Increase in vasoconstrictors

Thromboxane, endothelin, VEGF

Functional and later structural changes

Key factors contributing to haemodynamic collapse in acute pulmonary embolism

BP = blood pressure; CO = cardiac output; LV = left ventricular; RV = right ventricular; TV = tricuspid valve.

www.escardio.org/guidelines

European Heart Journal (2014):doi:10.1093/eurheartj/ehu283

Classic triad

- Dyspnea
- Pleuritic chest pain
- Hemoptysis
- Swollen, tender, warm, red calf
- ECG, X-ray
- Ventilation/perfusion scan
- CT angiography

• D-dimers – fibrin degradation products – high sensitivity, low specificity

Ventilation scan normal

Perfusion scan reveals defects in right lung. Emboli in left lung not visualized

X-ray film often normal

Chest X-ray

Westermark sign – oligemia

Hampton hump – pulmonary infarction

Hampton's Hump

Figure 1. Chest radiograph demonstrating focal oligemia in the right lung (area between white arrowheads) Westermark sign and a prominent right descending pulmonary artery (black arrow) – Palla's sign.

Shiva Sreenivasan et al. Circulation. 2007;115:e211

Copyright © American Heart Association, Inc. All rights reserved.

Sudden onset of dyspnea and tachycardia in a predisposed individual is a cardinal clue.

Dyspnea

Auscultation may be normal or with few rales, and diminished breath sounds may be noted.

Tachycardia

Table 6 Prevalence of symptoms and signs in patientswith suspected PE according to final diagnosis

	PE confirmed (n = 219)	PE excluded (n = 546)
Symptoms		
Dysphoea	80%	59%
Chest pain (pleuritic)	52%	43%
Chest pain (substernal)	12%	8%
Cough	20%	25%
Haemoptysis	11%	7%
Syncope	19%	11%
Signs		
Tachypnoea (≥20/min)	70%	68%
Tachycardia (>100/min)	26%	23%
Signs of DVT	15%	10%
Fever (>38.5°C)	7%	17%
Cyanosis	11%	9%

Philip Steven Wells, M.D., M.Sc

elect Criteria:	Results:
 Symptoms of DVT (3 points) No alternative diagnosis better explains the illness (3 points) Tachycardia with pulse > 100 (1.5 points) Immobilization (>= 3 days) or surgery in the previous four weeks (1.5 points) Prior history of DVT or pulmonary embolism (1.5 points) Presence of hemoptysis (1 point) 	Total Criteria Point Count: 0 Reset Form Pulmonary Embolism Risk Score Interpretation Score > 6: High probability Score > 6: High probability Score < 2:

The article referenced below also refers to a cut point of 4 points or less as PE unlikely as long as the specific D-Dimer test is negative. Refer to the original article below for all details.

Revised Geneva Score*

Characteristic	Points	
Age older than 65 years	1	
Previous deep venous thrombosis or pulmonary embolism	3	
Surgery or fracture within 1 month	2	
Active malignant condition	2	
Unilateral lower limb pain	3	
Hemoptysis	2	
Heart rate 75–94 beats/minute	3	
Heart rate 95 beats/minute or more	5	
Pain in response to lower-limb deep venous palpation, unilateral edema	4	
unilateral edema	4	

0-3 points indicates low clinical probability of pulmonary embolism (8% in the original validation study*)

4–10 points indicates intermediate clinical probability of pulmonary embolism (28% in the original validation study*)

≥11 points indicates high clinical probability of pulmonary embolism (74% in the original validation study*)

*Le Gal G. Prediction of pulmonary embolism in the emergency department: The revised Geneva score. Ann Intern Med 2006;144:165.

Deep vein thrombosis

Guidelines

European Heart Journal (2014) **35**, 3033–3080 doi:10.1093/eurheartj/ehu283 **ESC GUIDELINES**

2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism

The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)

Endorsed by the European Respiratory Society (ERS)

Figure 3 | Diagnostic approach to suspected acute pulmonary embolism. Abbreviations: ELISA, enzyme-linked immunosorbent assay; MDCT, multi-detector CT; PE, pulmonary embolism.

Initial risk stratification of acute PE

www.escardio.org/guidelines

European Heart Journal (2014):doi:10.1093/eurheartj/ehu283

Decision tree algorithm

Decision tree algorithm

Decision matrix

Table 64-4 Decision Matrix for Patients with Suspected Pulmonary Embolism

	D-Dimer Negative	D-Dimer Positive	CT Negative	CT Positive
Wells score ≤ 4 "PE unlikely"	No CT No treatment	СТ	No treatment	Treatment
Wells score > 4 "PE likely"	СТ	СТ	No treatment	Treatment

Exotic emboli

Subclaviar central

line

Material	Clinical Setting
Air	Cardiac surgery, neurosurgery, improper manipulation of central venous catheters
Amniotic fluid	Active labor
Fat	Long bone fracture, liposuction
Foreign body	Pieces of intravenous devices, talc
Oil	Lymphangiography
Parasite eggs	Schistosomiasis
Septic emboli	Endocarditis, thrombophlebitis
Thrombus	Deep venous thrombosis
Tumor	Renal cell carcinoma with invasion of vena cava

EXTRAVASCULAR SOURCES OF PULMONARY EMBOLI

Cotton fiber embolus (granuloma); may result from carelessly wiped needles (often seen in drug addicts)

amphetamine addict

Mustard seed emboli from contaminated heroin injected intravenously

Air emboli (sche-matic); air inadvertently introduced during IV injection or from central venous catheters

Differential diagnosis

Pulmonary thromboembolism vs pulmonary hypertension

Pneumonia

Valvular diseases

Acute myocardial infarction

Acute heart failure

Pericarditis

Aortic rupture

Pleural diseases

Treatment

Figure 2 | Overview of treatment strategies for patients with pulmonary embolism. *Consider prolonged treatment after counseling of the patient. Abbreviations: LMWH, low-molecular-weight heparin; VKA, vitamin-K antagonist.

Treatment

Thrombolysis or surgical thrombectomy

Heparin, warfarin, vena cava inferior filter

	Thrombo	lysis	Anticoagu	ation		Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixed, 95% CI
UPET 1970	6	82	7	78	15.2%	0.80 [0.26, 2.50]	1970		
Tibbutt et al 1974	0	13	1	17	2.9%	0.41 [0.02, 10.83]	1974	-	
Ly et al 1978	1	14	2	11	4.8%	0.35 [0.03, 4.42]	1978		
Dotter et al 1979	1	15	2	16	4.1%	0.50 [0.04, 6.17]	1979		
Marini et al 1988	0	20	0	10		Not estimable	1988		
Levine et al 1990	1	33	0	25	1.2%	2.35 [0.09, 60.24]	1990		C
PIOPED 1990	1	9	0	4	1.3%	1.59 [0.05, 47.52]	1990		
PAIMS2 1992	2	20	1	16	2.3%	1.67 [0.14, 20.23]	1992		
Goldhaber et al 1993	0	46	2	55	5.2%	0.23 [0.01, 4.92]	1993	-	
Jerjes-Sanchez et al 1995	0	4	4	4	9.3%	0.01 [0.00, 0.77]	1995	+	
MSPPE-3 2002	4	118	3	138	6.1%	1.58 [0.35, 7.20]	2002		
TIPES 2009	0	28	1	30	3.3%	0.35 [0.01, 8.83]	2009	3. 	
Fasullo et al 2011	0	37	6	35	15.1%	0.06 [0.00, 1.12]	2011	←	•
MOPETT 2013	1	61	3	60	6.8%	0.32 [0.03, 3.13]	2013		
TOPCOAT 2014	1	40	1	43	2.1%	1.08 [0.07, 17.81]	2014		
PEITHO 2014	6	506	9	499	20.5%	0.65 [0.23, 1.85]	2014		
Total (95% CI)		1046		1041	100.0%	0.57 [0.35, 0.92]			◆
Total events	24		42						
Heterogeneity: $Chi^2 = 10.61$,	df = 14 (P	= 0.72);	l² = 0%					0.01	
Test for overall effect: Z = 2.2	8 (P = 0.02	2)						0.01	Favours thrombolysis Favours anticoagulation

Pulmonary embolism

Key points

- Venous thromboembolism, and more specifically pulmonary embolism, is a frequently occurring and potentially fatal condition for which improved diagnosis and treatment are necessary
- Both inherited and acquired risk factors for pulmonary embolism have been identified, including thrombophilia, surgery, cancer, immobilization, and previous venous thromboembolism
- The clinical diagnosis of pulmonary embolism can be difficult because of variation in signs and symptoms; for accurate diagnosis, several diagnostic tests should be incorporated in an integrated approach
- Fewer than 20% of patients with suspected pulmonary embolism actually have the condition; the main initial challenge is to adequately exclude a diagnosis of PE
- The first diagnostic step is to assess the clinical probability of pulmonary embolism using a standardized score, followed by D-dimer testing and, if necessary, multidetector CT pulmonary angiography or ventilation-perfusion scanning
- The diagnostic strategy and the choice of imaging test depend on the clinical status of the patient and the availability of diagnostic tools

Pulmonary embolism

Key points

- Pulmonary embolism (PE) can be effectively treated with anticoagulant medication
- Initial therapy for PE comprises low-molecular-weight heparin, unfractionated heparin, or fondaparinux, and is followed by long-term treatment with oral vitamin-K antagonists
- Duration of long-term anticoagulation is usually 3–12 months and depends on type of PE, risk of recurrence, risk of major bleeding, and the patient's preference
- Tailoring the duration of treatment using biomarkers, such as D-dimer level or presence of residual vein thrombosis, is not yet recommended
- Patients with PE who are hemodynamically unstable (massive PE) should be treated with thrombolysis
- Currently, insufficient evidence exists that hemodynamically stable patients with right ventricular dysfunction (submassive PE) benefit from thrombolysis

Cor pulmonale

Examination

- 1. Definition
- 2. Classification
- 3. Epidemiology
- 4. Etiology
- 5. Pathogenesis
- 6. Symptoms & Signs
- 7. Complications
- 8. Prevention & Diagnosis & Therapy

Definition

Cor pulmonale

Pulmonary heart disease

Syndrome with **right-sided** ventricular hypertrophy, dilation or heart failure due to vascular **resistance** in the **lung** circulation

not due to systemic causes

"Lungs cause the heart to fail"

Classification

Acute

• ARDS, lung thromboembolism...

Chronic

• COPD, sleep apnea, lung thromboembolism...

Epidemiology

10% of all cases of heart failure

5-year mortality 70-80%

In 50% the cause is COPD

- Chronic bronchitis
- Lung emphysema

Etiology

Pulmonary hypertension

- Primary pulmonary hypertension
- Alveolar hypoxia pulmonary vasoconstriction (sleep apnea)
- Lung disorders lung tissue damage (COPD, interstitial lung disease, rheumatid disorders)
- Blood viscosity (blood clots, polycythemia)

Pathogenesis

Right ventricular afterload is increased

Hypertrophy or Dilation?

• Acute or Chronic

Mortality predictors

- Age > 65 years
- Bed rest > 72 hours
- Tachycardia, tachypnoe

Symptoms & Signs

Fatique

Dyspnea

Cyanosis

Chest pain

Hepatomegaly

Ascites

Jaundice

Raised jugular venous pressure

Abnormal heart sounds

Right ventricular hypertrophy

Complications

Peripheral hypoxia

Backward failure of the right heart

Arrhythmias

Polycythemia – stroke

Liver failure

Renal failure

Neurological complications

Syncope, cognitive deficits

Prevention & Diagnosis & Therapy

Causal prevention

Prevention and therapy of lung diseases

Discontinuing smoking

Patient history

Auscultation, Chest X-ray, ECG – right axis deviation, echocardiography, BNP, arterial gases

Causal treatment

Diuretics, anticoagulants, oxygen, transplantation?

PH online

Animation of PAH

https://www.youtube.com/watch?v=9a4untSzLzg

Khan Academy

https://www.youtube.com/watch?v=KtkR_NTte4M

Brown University lecture

https://www.youtube.com/watch?v=3bopVnVwPGQ

PE online

MEDCRAM lecture

https://www.youtube.com/watch?v=4C6BB56fG1M

Final notes

Without heparin prophylaxis 84% of patients will have pulmonary thromboembolism after hip or knee replacement.

Pulmonary embolization is the most common preventable cause of death in hospitalized patients.

80% of pulmonary emboli occur without prior symptoms

In 25-50% of autopsies of hospitalized patients pulmonary thromboemboli are found.

They are diagnosed in only 10-20% of cases antemortem.

Most of the cases remain undiagnosed.

2/3 of deaths due to pulmonary emboli occur within 30 minutes.

Early treatment is effective.

Final notes

We seem to know a lot about the pathogenesis of pulmonary hypertension.

Final notes

We seem to know a lot about the pathogenesis of pulmonary hypertension.

But we are far from understanding the disease processes.

So, how can we maximize the benefits for the patients?

...by following the guidelines.

www.imbm.sk

petercelec@gmail.com

.

Contraction of

III III